首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6466篇
  免费   1313篇
  国内免费   993篇
化学   4588篇
晶体学   226篇
力学   389篇
综合类   116篇
数学   742篇
物理学   2711篇
  2024年   3篇
  2023年   110篇
  2022年   175篇
  2021年   254篇
  2020年   320篇
  2019年   350篇
  2018年   283篇
  2017年   327篇
  2016年   392篇
  2015年   420篇
  2014年   473篇
  2013年   631篇
  2012年   705篇
  2011年   657篇
  2010年   513篇
  2009年   508篇
  2008年   492篇
  2007年   412篇
  2006年   340篇
  2005年   305篇
  2004年   244篇
  2003年   166篇
  2002年   139篇
  2001年   111篇
  2000年   76篇
  1999年   76篇
  1998年   33篇
  1997年   43篇
  1996年   47篇
  1995年   45篇
  1994年   22篇
  1993年   23篇
  1992年   12篇
  1991年   15篇
  1990年   11篇
  1989年   9篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1980年   4篇
  1936年   2篇
排序方式: 共有8772条查询结果,搜索用时 218 毫秒
61.
近几年,由于光触发自修复聚合物具有可控快速等优势,其在自修复聚合物领域中占据了重要的地位。光触发自修复聚合物实现自修复的方法主要分为3类,分别是基于光交联反应的自修复、基于光触发交换反应的自修复和基于光热效应的自修复。本文主要从光触发自修复聚合物的修复机制以及修复过程中涉及的化学本质两个方面,重点阐述了上述3类光触发自修复方法的最新研究进展,强调3种光触发自修复之间的联系和共同点。同时,对光触发自修复聚合物未来的发展前景进行了展望。  相似文献   
62.
为准确测定铌钛合金中氢含量,使用LECO-404氢分析仪,采用惰性气氛脉冲加热熔融试样,热导法测定。研究了不同的脱气功率对空白值和试样分析值的影响,选择了脱气功率为4 500 W。通过助熔剂实验,选择了0.50g锡作为铌钛合金中氢释放的助熔剂。验证了钛标准样品的适用性。确定了分析功率为3 500 W,最短积分时间为60s。精密度实验中氢含量测定的相对标准偏差(RSD)为2.5%~5.5%,加标回收率为97.82%~104.5%,可以准确测定铌钛合金中氢含量。研究结果对准确测定铌钛合金中氢含量具有指导意义。  相似文献   
63.
建立了乳粉中痕量高氯酸盐的固相萃取离子色谱分析方法。在碱性条件下,乙腈提取、浓缩,0.22μm尼龙滤膜+RP柱净化,AS20阴离子分析柱(150mm×4.0mm)分离,流动相为氢氧化钠溶液(30~70mmol/L),流速1.0mL/min。结果表明,高氯酸盐在0.4~20μg/L内具有良好的线性关系,相关系数0.999 8,样品检出限20μg/kg,加标回收率在77.2%~108%。测定了41个乳粉中的高氯酸盐含量,高氯酸盐检出率为31.7%。对质监部门用来检测乳粉中高氯酸盐的方法是一个补充,为食品安全提供了参考数据。  相似文献   
64.

Background

Under iron-deficient conditions, Chlamydomonas exhibits high affinity for iron absorption. Nevertheless, the response, transmission, and regulation of downstream gene expression in algae cells have not to be investigated. Considering that the MAPK pathway is essential for abiotic stress responses, we determined whether this pathway is involved in iron deficiency signal transduction in Chlamydomonas.

Results

Arabidopsis MAPK gene sequences were used as entry data to search for homologous genes in Chlamydomonas reinhardtii genome database to investigate the functions of mitogen-activated protein kinase (MAPK) gene family in C. reinhardtii under iron-free conditions. Results revealed 16 C. reinhardtii MAPK genes labeled CrMAPK2CrMAPK17 with TXY conserved domains and low homology to MAPK in yeast, Arabidopsis, and humans. The expression levels of these genes were then analyzed through qRT-PCR and exposure to high salt (150 mM NaCl), low nitrogen, or iron-free conditions. The expression levels of these genes were also subjected to adverse stress conditions. The mRNA levels of CrMAPK2, CrMAPK3, CrMAPK4, CrMAPK5, CrMAPK6, CrMAPK8, CrMAPK9, and CrMAPK11 were remarkably upregulated under iron-deficient stress. The increase in CrMAPK3 expression was 43-fold greater than that in the control. An RNA interference vector was constructed and transformed into C. reinhardtii 2A38, an algal strain with an exogenous FOX1:ARS chimeric gene, to silence CrMAPK3. After this gene was silenced, the mRNA levels and ARS activities of FOX1:ARS chimeric gene and endogenous CrFOX1 were decreased. The mRNA levels of iron-responsive genes, such as CrNRAMP2, CrATX1, CrFTR1, and CrFEA1, were also remarkably reduced.

Conclusion

CrMAPK3 regulates the expression of iron-deficiency-responsive genes in C. reinhardtii.
  相似文献   
65.
In this paper, we will use the Schwarz lemma at the boundary to character the distortion theorems of determinant at the extreme points and distortion theorems of matrix on the complex tangent space at the extreme points for normalized locally biholomorphic quasi-convex mappings in the unit ball B n respectively.  相似文献   
66.
Because fossil fuels are continuously depleted, valorization of biomass into valuable liquid products and chemicals is of great significance yet it remains challenging. Among many biomass-derived products, lactic acid is one of the most important renewable monomers for preparing the degradable polymer polylactic acid. The use of raw biomass to produce lactic acid through catalytic conversion is an attractive approach. In this work, the catalytic reaction performance and mechanism of different Lewis acids (Y3+, Sc3+, and Al3+) for the production of lactic acid from cellulose were investigated in detail by isotopic nuclear magnetic resonance (NMR) and mass spectrometry. The production of lactic acid from cellulose includes tandem and competing reactions. The order of catalytic activity for the one-pot conversion of cellulose into lactic acid is as follows: Y3+ > Al3+ > Sc3+. The main tandem reactions involve the hydrolysis of cellulose into glucose, the isomerization of glucose into fructose (the order of catalytic activity, the same below: Y3+ > Al3+, Y3+ > Sc3+), the cleavage of fructose via a retro-aldol reaction to glyceraldehyde (GLY) and 1, 3-dihydroxyacetone (DHA) (Sc3+ > Y3+ > Al3+), and the conversion of DHA or GLY to the final product lactic acid (Al3+ > Y3+ > Sc3+). It was found that the process of glucose isomerization to fructose was the key step to the final selectivity of the tandem reaction of cellulose conversion to lactic acid, and it was clarified that the production of lactic acid from DHA underwent a keto-enol (K-E) tautomerization process rather than a classical 1, 2-shift process. First, DHA was transformed into GLY via the isomerization process, then the adjacent hydroxyl group of GLY was removed in the form of water to produce an α, β-unsaturated species. After that, the α, β-unsaturated species underwent K-E tautomerization to generate unsaturated aldehyde-ketone intermediates. Meanwhile, a molecule of water was added to aldehyde-ketone intermediates to obtain a diol product, the hydrogen atom at the methine position was transferred and the lactic acid was finally obtained through the K-E tautomerization process. The in-depth understanding of the reaction mechanism presented in this work will help to design more selective catalysts for cellulose conversion into value-added oxygen-containing small molecule chemicals.   相似文献   
67.
Water-soluble small organic photothermal agents (PTAs) over NIR-II biowindow (1000–1350 nm) are highly desirable, but the rarity greatly limits their applications. Based on a water-soluble double-cavity cyclophane GBox-44+ , we report a class of host–guest charge transfer (CT) complexes as structurally uniform PTAs for NIR-II photothermal therapy. As a result of its high electron-deficiency, GBox-44+ can bind different electron-rich planar guests with a 1 : 2 host/guest stoichiometry to readily tune the CT absorption band that extends to the NIR-II region. When using a diaminofluorene guest substituted with an oligoethylene glycol chain, the host–guest system realized both good biocompatibility and enhanced photothermal conversion at 1064 nm, and was then exploited as a high-efficiency NIR-II PTA for cancer cell and bacterial ablation. This work broadens the potential applications of host–guest cyclophane systems and provides a new access to bio-friendly NIR-II photoabsorbers with well-defined structures.  相似文献   
68.
Two-dimensional (2D) organic polymers have recently received considerable interest, especially those whose architectures are held together via supramolecular engineering. However, current approaches toward supramolecular 2D structures usually suffer from mutual interference of noncovalent interactions and lack of intrinsic functions. Herein, we report well-regulated 2D supramolecular polymers (2DSPs) through an aromatics-selective recognition strategy of cation-π and donor-acceptor (D-A) motifs, which are derived from C4-symmetric cationic monomers and electron-withdrawing molecules. By subtly designing the strength and direction of noncovalent driving forces, the mutual interference between cation-π and D-A interactions is effectively avoided, enabling the construction of 2DSPs in aqueous solution. On this basis, the resultant 2DSPs possess boosted photocatalytic hydrogen evolution activity at a rate of 600 μmol g−1 h−1, which is mainly ascribed to the specific stacking mode of cation-π/D-A motifs and the ordered 2D structures.  相似文献   
69.
The development of conjugated polymers especially n-type polymer semiconductors is powered by the design and synthesis of electron-deficient building blocks. Herein, a strong acceptor building block with di-metallaaromatic structure was designed and synthesized by connecting two electron-deficient metallaaromatic units through a π-conjugated bridge. Then, a double-monomer polymerization methodology was developed for inserting it into conjugated polymer scaffolds to yield metallopolymers. The isolated well-defined model oligomers indicated polymer structures. Kinetic studies based on nuclear magnetic resonance and ultraviolet–visible spectroscopies shed light on the polymerization process. Interestingly, the resulted metallopolymers with dπ–pπ conjugations are very promising electron transport layer materials which can boost photovoltaic performance of an organic solar cell, with power conversion efficiency up to 18.28 % based on the PM6 : EH-HD-4F non-fullerene system. This work not only provides a facile route to construct metallaaromatic conjugated polymers with various functional groups, but also discovers their potential applications for the first time.  相似文献   
70.
Photocatalytic synthesis of hydrogen peroxide (H2O2) is a potential clean method, but the long distance between the oxidation and reduction sites in photocatalysts hinders the rapid transfer of photogenerated charges, limiting the improvement of its performance. Here, a metal-organic cage photocatalyst, Co14(L−CH3)24 , is constructed by directly coordinating metal sites (Co sites) used for the O2 reduction reaction (ORR) with non-metallic sites (imidazole sites of ligands) used for the H2O oxidation reaction (WOR), which shortens the transport path of photogenerated electrons and holes, and improves the transport efficiency of charges and activity of the photocatalyst. Therefore, it can be used as an efficient photocatalyst with a rate of as high as 146.6 μmol g−1 h−1 for H2O2 production under O2-saturated pure water without sacrificial agents. Significantly, the combination of photocatalytic experiments and theoretical calculations proves that the functionalized modification of ligands is more conducive to adsorbing key intermediates (*OH for WOR and *HOOH for ORR), resulting in better performance. This work proposed a new catalytic strategy for the first time; i.e., to build a synergistic metal-nonmetal active site in the crystalline catalyst and use the host–guest chemistry inherent in the metal-organic cage (MOC)to increase the contact between the substrate and the catalytically active site, and finally achieve efficient photocatalytic H2O2 synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号